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1. Background, motivation, or why do this at all?

Signal initiation: biological significance

Modeling of signal initiation

Experimental modalities

Phenomenology, importance of landscape

Challenge of model validation using high 
resolution data



Signal initiation by membrane bound receptors

• Relevant to cancers, immune conditions

• EGF (ErbB2, ErbB3), VEGF, pre-B, FcεRI

• Receptors located on the cell membrane

• Ligand (“signal”) binds to receptors

• A sequence of transformations results in 

downstream signal propagation



Signal initiation by membrane bound receptors

VEGF signal initiation relies on ligand induced dimerization
! + # ↔ #! ; #! + ! ↔ & ; & ↔ &∗
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Complex reaction patterns

Ligand induced oligomerization of receptors
EGF / ErbB:       !" + !" → !" % → (!")(!"∗)

preB:              " + " → ""; "" + " → """ → ⋯
Cross-phosphorylation of bound receptors

!" + !" , → !" + !" ,∗

Successive phosphorylation events (kinetic proofreading)
"- " → "- "∗ → ("-∗)("∗)

Complexity: 
.

receptor
types

×
8

possible
proteins

×
=

phos
states

×
oligomer size
phos of proteins

labeling
Stochastic, rule- and agent-based representation (“on the fly” species)



Modeling (stochastic, rule based, “network free”)

Complexity: large set of reactions  (! + # ↔ %) or (! ↔ !′), 
Many are the same transformation of 1-2 basic species

'((∗ → '(( ; '(∗ → '( ; (∗ → (
( + ( → ((; '( + ( → '(( ; '(∗ → '(∗(

Good idea: Identify basic species and “rules”*

', ( ; {' + ( ↔ '(; ( + ( ↔ ((; ( ↔ (∗}
(a) Create list of species and reactions, track amounts of each

(b) Agent based approach: track the state of each copy of the 
basic species (makes sense when evolution is stochastic)
( * as done in  Kappa, also BioNetGen / NFSim)



Experimental collaboration

Wilson & Lidke labs at U. of New Mexico
• Super-resolution optical microscopy 
• Receptors labelled with fluorescent quantum dots
• Labelled particles are detected based on the light 

(photons) they emit
• Location (centroid) is determined by fitting the 

distribution of detected light
• Resolution: !(10nm) spatial  / 20+ frames per 

second
• Trajectories of particles are reconstructed using 

dedicated software (HMM etc.)



Context

We use spatially resolved simulations of the 
reaction networks to compare with microscopy 
data
• Extract parameters (e.g. dimerization / 

dissociation rates)
• Infer underlying landscape
• Use calibrated simulations to make predictions
• The data is one of the major sources of 

parameters for the simulation



2. Analysis of trajectories & domain reconstruction

Brownian motion – distributions & tests

Anomalous diffusion

Confinement – experimental evidence, possible 
impact

Results from observed & simulated trajectories

Domain reconstruction algorithm

Results with reconstructed domains



Analysis of Jump Size Distributions

Brownian motion [equiv. to diffusion: !" = $(!&& + !(() ]: 

• displacements Δ*, Δ, follow a normal with -. = 2$Δ0 :

2&( *, , = 1
45$0 6

7 8&9:8(9 /<="

• the square displacement* > ≡ Δ@ . = Δ*. + Δ,. follows 

2A Δ@. = exp(− Δ@./4$0)
4$0 ⇔ 2A > = exp −>/2-.

2-.

• the mean square displacement (MSD) :  Δ@. = 4$0
*[  ∬⋯J*J, = ∫⋯@J@ ∫JL = 25 ∫⋯@J@ = 5 ∫⋯J> ]



Reconstructed trajectories: Anomalous Diffusion

• There is ample evidence of a non-uniform movement, typically 
described as transient confinement
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Experiment
Brownian fit
Linear fit with intercept

• Mean Square Displacements (expected  
proportional to !) have a decreasing slope

data from D. Lidke Lab, UNM

Kusumi, Annu. Rev. Biophys. 
& Biomol.Struct. (2005)



Co-confinement vs. dimerization

Simulation Experimental Data

Dimer

Co-confined

Approach

Low-Nam et al, Nature Struct. & Mol. Biol., (2011)McCabe et al, Biophys. J., (2011)



Confinement, microdomains, cytoskeleton

Single particle tracking shows confinement over short timescales
• A likely explanation is interaction with the cytoskeleton, which 

impedes movement of membrane proteins
• The transient localization is due to microdomains, induced by 

elements of the cytoskeleton
• Kusumi’s work (early 2000’s) is being revisited but the 

phenomenon of transient confinement is widely established

Kusumi, (2005)



Confinement, microdomains, cytoskeleton

Single particle tracking shows confinement over short timescales
• A likely explanation is interaction with the cytoskeleton, which 

impedes movement of membrane proteins
• The transient localization is due to microdomains, induced by 

elements of the cytoskeleton
• Kusumi’s work (early 2000’s) is being revisited but the 

phenomenon of transient confinement is widely established
Aspects of practical interest for modeling:
• Impact of microdomains on signal initiation kinetics
• Receptor oligomerization

• Effectiveness of (scarce) kinases involved in activation

• The physical mechanism that gives rise to microdomains
Both require a way to reliably identify confining domains



Modeling 1: Understanding the distributions

Distribution of jump sizes è

Actual ê and simulated î trajectories

Simulated confining domains î
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Modeling 1: Understanding the distributions

Distribution of jump sizes è

Actual ê and simulated î trajectories

Simulated confining domains î

data from D. Lidke Lab, UNM



Modeling 1: Diffusion with confining domains
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Figure 1: Experimental results. Displacement statistics for the aggregate of 1685 reconstructed trajectories, derived
from 21 movies. Both the mean square displacement (MSD) as well as the step (jump) distributions over fixed time
(duration) exhibit deviations from classic Brownian motion. A. MSD versus the observation time. The dependence
is sublinear (has a decreasing slope) for short time intervals. The slope becomes constant for Tobs ? 1 s, up to
⇡ 14 s; this regime is well approximated by a linear dependence with an intercept. B. Distribution of linear (x and
y) displacements over time intervals of 0.25 s, (5 recording intervals ⌧ ). Compared to a normal distribution with the
same MSD, there is an excess of short (and very long) jumps. C. The distribution of square displacements at fixed
time illustrates the deviation from Brownian behavior more clearly. The logarithm of the probability density (Eq.2) as
a function of the value of the square displacement should follow a line with slope �1/(4DTobs) ; instead, the square
displacement distributions at fixed duration have a characteristic upward curved shape.
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Methods

Background

Molecules in a homogeneous environment typically execute a random walk, a succession of discrete steps

interspersed with random changes of direction and speed. A point particle is said to execute Brownian mo-

tion in two dimensions (d = 2) if its displacements (x, y) after time t are random and normally distributed,

according to the probability density function (PDF)

f(x, y; t) =
1

4⇡Dt
exp

✓
�x2 + y2

4Dt

◆
, (1)

where D is the (isotropic) diffusion constant. Eq. (1) implies two easily verifiable properties regarding the

displacement r ⌘
�
x2 + y2

�1/2. First, the distribution P (r2) of square displacements r2 after a fixed time t

is exponential:

P (r2) =
1

2�2
xy

exp
✓
� r2

2�2
xy

◆
, (2)

where the standard deviation �xy of the displacement in either the x or y direction satisfies �2
xy = 2Dt.

Second, the mean square displacement (MSD), defined as the expectation of the square of the displacement

vector, hr2i = hx2i+ hy2i, is proportional to the time (duration) t over which the displacement takes place.

The slope is determined by the diffusion constant,

hr2i = 2�2
xy(t) = 4Dt . (3)

Single particle tracking experiments provide estimates of the coordinates (xk, yk) of individual particles

in a sequence of frames taken at some time interval ⌧ . These can be used to construct distributions of step

sizes at fixed observation times (durations) Tobs, corresponding to integer multiples of the frame interval

(Tobs = ⌧, 2⌧, · · · ), as well as to derive the dependence of MSD values on the observation time.
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Figure 2: Simulations of Brownian motion in the presence of semi-permeable barriers. A. Distribution of individual
square displacements (ISD) for different observation times (durations), in a rectangular grid of evenly spaced (B =1
in simulation units), uniformly permeable (pcross = 0.01) barriers. The barriers induce a pattern of alternating faster
and slower apparent diffusion. If the diffusion length corresponding to the observation time (� ⌘ 2

p
D0 · Tobs) is

smaller than the barrier spacing, the alternation begins with fast diffusion, slowed down at the barrier, then faster, and
so on. For larger observation times, the initial fast diffusion regime is washed out , and the curve begins with slow
diffusion, followed by fast. B. The clean upward curved shape, not seen with repeated barriers, is typical of the single
trapping domain configuration. These simulations also exhibit an initial faster regime. However, this regime is not
visible in the simulations shown in Fig.4, which did not use identical, square shaped domains. C. Outline of the barrier
landscape used in the simulations shown in Fig. 4. To avoid quasi-periodic behavior, the barrier spacings were chosen
from a normal distribution (centered on B = 2.5). The barriers are generally semi-permeable; the domains outlined
with thick lines were partially confining (free entrance, small exit permeability). The configuration shown here was
repeated using periodic boundary conditions.
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Figure 4: Comparison between experiment and simulations. Random sized, trapping (attractive) domains lead to
step size distributions that are qualitatively similar to those observed experimentally. A. Distributions of simulated
displacements at fixed time closely approximate the experimental result, with a larger discrepancy for small times.
B. MSD versus observation time. We used the slope (apparent diffusion constant) of this dependence to convert
from simulation to physical units. The discrepancy in the fixed duration distributions (A. and C.) is really due to the
differences between the time dependence of the mean square displacement (MSD). The simulation exhibits a smaller
vertical offset than the experimental data. C. The distribution of square displacements at fixed time allows for a better
comparison. The simulation matches the data better for intermediate observation times. For short times, the simulation
underestimates the number of long jumps. D. Simulated trajectories. One aspect that could be improved is the simple
geometric shapes we used in these simulations, which should better reproduce the likely varied size and contorted
shape of the actual domains (compare with trajectories shown in Fig. S1).
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Figure 4: Comparison between experiment and simulations. Random sized, trapping (attractive) domains lead to
step size distributions that are qualitatively similar to those observed experimentally. A. Distributions of simulated
displacements at fixed time closely approximate the experimental result, with a larger discrepancy for small times.
B. MSD versus observation time. We used the slope (apparent diffusion constant) of this dependence to convert
from simulation to physical units. The discrepancy in the fixed duration distributions (A. and C.) is really due to the
differences between the time dependence of the mean square displacement (MSD). The simulation exhibits a smaller
vertical offset than the experimental data. C. The distribution of square displacements at fixed time allows for a better
comparison. The simulation matches the data better for intermediate observation times. For short times, the simulation
underestimates the number of long jumps. D. Simulated trajectories. One aspect that could be improved is the simple
geometric shapes we used in these simulations, which should better reproduce the likely varied size and contorted
shape of the actual domains (compare with trajectories shown in Fig. S1).

data from D. Lidke Lab, UNM



Modeling 1: Understanding the distributions

The ‘hockey stick’ distribution of jump sizes reflects the 
existence of at least two populations of receptors
• Faster moving à molecules outside domains, diffusing freely
• Slower moving à molecules confined in domains
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Modeling 1: Confining Domains vs. Corrals
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Figure 1: Experimental results. Displacement statistics for the aggregate of 1685 reconstructed trajectories, derived
from 21 movies. Both the mean square displacement (MSD) as well as the step (jump) distributions over fixed time
(duration) exhibit deviations from classic Brownian motion. A. MSD versus the observation time. The dependence
is sublinear (has a decreasing slope) for short time intervals. The slope becomes constant for Tobs ? 1 s, up to
⇡ 14 s; this regime is well approximated by a linear dependence with an intercept. B. Distribution of linear (x and
y) displacements over time intervals of 0.25 s, (5 recording intervals ⌧ ). Compared to a normal distribution with the
same MSD, there is an excess of short (and very long) jumps. C. The distribution of square displacements at fixed
time illustrates the deviation from Brownian behavior more clearly. The logarithm of the probability density (Eq.2) as
a function of the value of the square displacement should follow a line with slope �1/(4DTobs) ; instead, the square
displacement distributions at fixed duration have a characteristic upward curved shape.
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Figure 2: Simulations of Brownian motion in the presence of semi-permeable barriers. A. Distribution of individual
square displacements (ISD) for different observation times (durations), in a rectangular grid of evenly spaced (B =1
in simulation units), uniformly permeable (pcross = 0.01) barriers. The barriers induce a pattern of alternating faster
and slower apparent diffusion. If the diffusion length corresponding to the observation time (� ⌘ 2

p
D0 · Tobs) is

smaller than the barrier spacing, the alternation begins with fast diffusion, slowed down at the barrier, then faster, and
so on. For larger observation times, the initial fast diffusion regime is washed out , and the curve begins with slow
diffusion, followed by fast. B. The clean upward curved shape, not seen with repeated barriers, is typical of the single
trapping domain configuration. These simulations also exhibit an initial faster regime. However, this regime is not
visible in the simulations shown in Fig.4, which did not use identical, square shaped domains. C. Outline of the barrier
landscape used in the simulations shown in Fig. 4. To avoid quasi-periodic behavior, the barrier spacings were chosen
from a normal distribution (centered on B = 2.5). The barriers are generally semi-permeable; the domains outlined
with thick lines were partially confining (free entrance, small exit permeability). The configuration shown here was
repeated using periodic boundary conditions.
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Figure 4: Comparison between experiment and simulations. Random sized, trapping (attractive) domains lead to
step size distributions that are qualitatively similar to those observed experimentally. A. Distributions of simulated
displacements at fixed time closely approximate the experimental result, with a larger discrepancy for small times.
B. MSD versus observation time. We used the slope (apparent diffusion constant) of this dependence to convert
from simulation to physical units. The discrepancy in the fixed duration distributions (A. and C.) is really due to the
differences between the time dependence of the mean square displacement (MSD). The simulation exhibits a smaller
vertical offset than the experimental data. C. The distribution of square displacements at fixed time allows for a better
comparison. The simulation matches the data better for intermediate observation times. For short times, the simulation
underestimates the number of long jumps. D. Simulated trajectories. One aspect that could be improved is the simple
geometric shapes we used in these simulations, which should better reproduce the likely varied size and contorted
shape of the actual domains (compare with trajectories shown in Fig. S1).

Brownian motion simulations in 
a landscape:
• Confining domains versus corrals
• The upward curved shape is 

reproduced only by confining 
domains

• Both reproduce the MSD time 
dependence (qualitatively)
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Concerns

Only qualitative match
How do we know that the populations are not 
distinct molecule types? 
• the same molecule can switch from one regime to 

another (confined / free)
• what if there are several types of molecules, some always 

fast, some always slow

Distributions were sensitive to the shape of the 
simulated domains
Why not identify the domains? 



Analyzing the jump size distributions

More careful decomposition into 
sum of exponentials

Log binning

Error estimation based on number 
of counts per bin 

Simulated annealing fit of two or 
three exponentials, for each number 
of steps



Analyzing the jump size distributions

More careful decomposition into 
sum of exponentials

Log binning

Error estimation based on number 
of counts per bin 

Simulated annealing fit of two or 
three exponentials, for each number 
of steps



Modeling 2: Domain Reconstruction

Estimate the likelihood that a given point in an 
SPT trajectory is part of the confined population 
or not

Attempt to reconstruct the confining domains 
that modulate the movement of the particles.



Modeling 2: Domain Reconstruction

1. Construct a distribution of jump sizes for a 
selection of step (frame interval) numbers for 
the entire sample

2. Define a joint score as weighted average of the 
percentage rank for each point

3. Identify the sub-population of slower points 
4. Cluster the identified points
5. Construct a contour around each cluster



Domains from contours
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Step size distributions: build a cumulative score
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Domain Reconstruction: Find slow points
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Domain Reconstruction: Cluster slow points
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Domain Reconstruction: Footprint
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Domain reconstruction (pre-B)



Domain reconstruction (pre-B)



Simulations with domains

• Pre-B cell receptors
• Receptors have two receptor binding domains 
• May form higher oligomers
• Two additional proteins (kinases), Lyn and Syk
• Phosphorylation through cross-activation mechanism 

involving three entities

• The system also has domains
• Trying to understand two patient samples 
• different levels of signaling in the absence of ligand 

• Kerketta et al., in preparation / submitted



Simulations with domains

Kerketta et al. (in preparation)



Simulations with domains
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Simulations with domains

C D

Kerketta et al. (in preparation)



Simulations with domains

Kerketta et al. (in preparation)



3. Improvements and extensions

Close the validation loop

Identification of domains and intrinsic mobility 
changes

Better characterization of the landscape

Combine with identification of binding



Closing the validation loop

We analyze trajectories and infer confining domains
• Algorithm* depends on a lot of parameters
• In particular, the weights used in constructing 

the cumulative score
The reconstructed domains are used in a spatially 
resolved simulation 
Additional details, such as dimer on-and off-rates, 
are estimated from experimental data
• Mapping from observed rates to ”true” rates 

requires simulations 



Closing the validation loop

We analyze trajectories and infer confining domains 
which are used in a spatially resolved simulations 
Next: 
• Extract synthetic experimental data from 

simulations
• Run synthetic data through domain 

reconstruction / parameter estimation 
procedures

• Optimize the procedures by comparing the input 
and the output.



Closing the validation loop…

Simulations with random barriers, localization density


