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1. Background, motivation, or why do this at all?

Signal initiation: biological significance
Modeling of signal initiation

Experimental modalities

Phenomenology, importance of landscape

Challenge of model validation using high
resolution data



Signal initiation by membrane bound receptors

 Relevant to cancers, immune conditions
 EGF (ErbB2, ErbB3), VEGF, pre-B, FceRl

 Receptors located on the cell membrane

IH

e Ligand (“signal”) binds to receptors

A sequence of transformations results in

downstream signal propagation



Signal initiation by membrane bound receptors

VEGF signal initiation relies on ligand induced dimerization
R+Ve<VR; VR+R<A; Ao A7
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Complex reaction patterns

Ligand induced oligomerization of receptors
EGF/ErbB: LR+ LR - (LR), —» (LR)(LR")
preB: R+R—->RR; RR+R - RRR — -
Cross-phosphorylation of bound receptors
(LR(i))(LR(J')) — (LR(i))(LR(J'*))
Successive phosphorylation events (kinetic proofreading)
(RP)(R) = (RP)(R") = (RP*)(R")

Complexity:
n oligomer size
[receptor‘ X [pOSSlblel x | phos | x |phos of proteins‘
types proteins states labeling

Stochastic, rule- and agent-based representation (“on the fly” species)



Modeling (stochastic, rule based, “network free”)

Complexity: large set of reactions (A + B < C)or (4 « A),
Many are the same transformation of 1-2 basic species
LRR® - LRR ;LR* > LR; R* - R
R+R—->RR; LR+R - LRR;LR* -> LR*R
Good idea: Identify basic species and “rules”*
{LLR};{L+R < LR;R+ R < RR;R & R*}
(a) Create list of species and reactions, track amounts of each

(b) Agent based approach: track the state of each copy of the
basic species (makes sense when evolution is stochastic)

( * as done in Kappa, also BioNetGen / NFSim)



Experimental collaboration

Wilson & Lidke labs at U. of New Mexico

Super-resolution optical microscopy
Receptors labelled with fluorescent quantum dots

Labelled particles are detected based on the light
(photons) they emit

Location (centroid) is determined by fitting the
distribution of detected light

Resolution: O(10nm) spatial / 20+ frames per
second

Trajectories of particles are reconstructed using
dedicated software (HMM etc.)



Context

We use spatially resolved simulations of the
reaction networks to compare with microscopy
data

» Extract parameters (e.g. dimerization /
dissociation rates)

* Infer underlying landscape
* Use calibrated simulations to make predictions

 The data is one of the major sources of
parameters for the simulation



2. Analysis of trajectories & domain reconstruction

Brownian motion — distributions & tests
Anomalous diffusion

Confinement — experimental evidence, possible
Impact

Results from observed & simulated trajectories
Domain reconstruction algorithm

Results with reconstructed domains



Analysis of Jump Size Distributions

Brownian motion [equiv. to diffusion: p; = D(px, + pyy) I:

 displacements Ax, Ay follow a normal with |6% = 2DAt |:

fry(69) = 1Dt (~(ax?+ay?)/4Dt)

.2
* the square displacement™* s = ‘Ar| = Ax? + Ay* follows

exp(— Ar?/4Dt) exp(—s/20%)
4Dt = |fs(s) = 207

fs(ar?) =

« the mean square displacement (MSD) : [(Ar?) = 4Dt
*[ ffdxdy — frdrqub — Zﬂf...rdr — n‘fds




Reconstructed trajectories: Anomalous Diffusion

Mean Square Displacements (expected
proportional to t) have a decreasing slope

Kusumi, Annu. Rev. Biophys.
& Biomol.Struct. (2005)
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There is ample evidence of a non-uniform movement, typically

described as transient confinement




Co-confinement vs. dimerization

Simulation Experimental Data
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Confinement, microdomains, cytoskeleton

Single particle tracking shows confinement over short timescales

* Alikely explanation is interaction with the cytoskeleton, which
impedes movement of membrane proteins

* The transient localization is due to microdomains, induced by
elements of the cytoskeleton

* Kusumi’s work (early 2000’s) is being revisited but the
phenomenon of transient confinement is widely established
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Confinement, microdomains, cytoskeleton

Single particle tracking shows confinement over short timescales

* Alikely explanation is interaction with the cytoskeleton, which
impedes movement of membrane proteins

* The transient localization is due to microdomains, induced by
elements of the cytoskeleton

* Kusumi’s work (early 2000’s) is being revisited but the
phenomenon of transient confinement is widely established

Aspects of practical interest for modeling:

* Impact of microdomains on signal initiation kinetics
* Receptor oligomerization
* Effectiveness of (scarce) kinases involved in activation

* The physical mechanism that gives rise to microdomains
Both require a way to reliably identify confining domains



Modeling 1: Understanding the distributions
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Modeling 1: Understanding the distributions
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Modeling 1: Diffusion with confining domains
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Modeling 1: Understanding the distributions

The ‘hockey stick’ distribution of jump sizes reflects the
existence of at least two populations of receptors

* Faster moving 2 molecules outside domains, diffusing freely
* Slower moving = molecules confined in domains

100 - . F(s) = Ce™*19" o f(s) = 3, e /2]
T=0.25s (5 steps)
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Modeling 1: Confining Domains vs. Corrals

Brownian motion simulations in
a landscape:
* Confining domains versus corrals

e The upward curved shape is
reproduced only by confining
domains

* Both reproduce the MSD time
dependence (qualitatively)
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Concerns

Only qualitative match

How do we know that the populations are not

distinct molecule types?

* the same molecule can switch from one regime to
another (confined / free)

 what if there are several types of molecules, some always
fast, some always slow

Distributions were sensitive to the shape of the
simulated domains

Why not identify the domains?



Analyzing the jump size distributions

More careful decomposition into

3 component deconvolution k=4 frames
12 T T T T T T
exp
. — fit (total)

sum of exponentials a, exp(85?/ )

a, exp( AS? | 02)
. . 0 a, exp( As?/ 03)
Log binning

i
Error estimation based on number
of counts per bin

[s=]
T

Simulated annealing fit of two or

three exponentials, for each numbe
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Analyzing the jump size distributions

More careful decomposition into
sum of exponentials

Log binning

Error estimation based on number

of counts per bin

Simulated annealing fit of two or
three exponentials, for each number
of steps
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Modeling 2: Domain Reconstruction

Estimate the likelihood that a given point in an
SPT trajectory is part of the confined population

or not

Attempt to reconstruct the confining domains
that modulate the movement of the particles.



Modeling 2: Domain Reconstruction

1. Construct a distribution of jump sizes for a
selection of step (frame interval) numbers for
the entire sample

2. Define a joint score as weighted average of the
percentage rank for each point

3. ldentify the sub-population of slower points
4. Cluster the identified points

5. Construct a contour around each cluster



Domains from contours
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Step size distributions: build a cumulative score
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Domain Reconstruction: Find slow points
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Domain Reconstruction: Cluster slow points
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Domain Reconstruction: Footprint
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Domain reconstruction (pre-B)
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Domain reconstruction (pre-B)
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Simulations with domains

* Pre-B cell receptors
* Receptors have two receptor binding domains
* May form higher oligomers
 Two additional proteins (kinases), Lyn and Syk

 Phosphorylation through cross-activation mechanism
involving three entities

* The system also has domains

* Trying to understand two patient samples
e different levels of signaling in the absence of ligand

* Kerketta et al., in preparation / submitted



Simulations with domains

Simulation space
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Kerketta et al. (in preparation)




Simulations with domains
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Simulations with domains

ITAM Activation: Nalm6 (Domain)
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Simulations with domains
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3. Improvements and extensions

Close the validation loop

|ldentification of domains and intrinsic mobility
changes

Better characterization of the landscape

Combine with identification of binding



Closing the validation loop

We analyze trajectories and infer confining domains
 Algorithm™* depends on a lot of parameters

* |n particular, the weights used in constructing
the cumulative score

The reconstructed domains are used in a spatially
resolved simulation

Additional details, such as dimer on-and off-rates,
are estimated from experimental data

* Mapping from observed rates to “true” rates
requires simulations



Closing the validation loop

We analyze trajectories and infer confining domains
which are used in a spatially resolved simulations

Next:

* Extract synthetic experimental data from
simulations

* Run synthetic data through domain
reconstruction / parameter estimation
procedures

* Optimize the procedures by comparing the input
and the output.



Closing the validation loop...

Simulations with random barriers, localization density




